DE LA RECHERCHE À L'INDUSTRIE

HIGH-ENERGY DATA FOR ADS (AND OTHER APPLICATIONS)

S. LERAY¹⁾,

together with A. BOUDARD¹⁾, J. CUGNON²⁾,

J.C. DAVID¹⁾, D. MANCUSI¹⁾

1)CEA/SACLAY, 2)UNIVERSITY OF LIÈGE

IMPORTANCE OF HIGH-ENERGY DATA

Neutron sources for material science, condensed matter physics (SNS, JPARC, ESS...)

Accelerator-driven sub-critical reactors for nuclear waste transmutation (MYRRHA...)

> Therapy with protons or heavy ions beams

Radiation protection, damage to electronic circuits in space or near accelerators

SIMULATION CODES

propagation of all particles created in elementary interactions

- ➤ Above 150-200 MeV : nuclear physics models i.e. Intra-Nuclear Cascade (+ Pre-eq) + evaporation-fission
- → cross-sections, properties of emitted particles directly used by the transport codes
- ➤ Below 150-200 (20) MeV : evaluated data libraries but not all isotopes up to 200 MeV, loss of correlations

HIGH-ENERGY DATA FOR SPALLATION DEVICES

■ Neutron production

- number → power of the system / needed accelerator intensity
- ➤ energy, spatial distribution (DDXS)→ target optimisation, damage in window and structures
- high energy neutrons → shielding
- Charged particle production
- yelling
 y
- ➤ energy → DPA, energy deposition
- Residual nuclide production
- **▶** element distribution → corrosion, change in metallurgical properties
- isotope distribution → activity (short lived isotopes), radiotoxicity
 (long lived isotopes), decay heat, delayed neutrons
- ➤ recoil energies → DPA in window and structures, energy deposition

HIGH-ENERGY DATA FOR SPALLATION DEVICES

■ Thin target data

- ➢ Goal: better understanding of reaction mechanisms → improvement of physics models
- Need of data covering the full range of target masses and incident energies → contrary to low energies rough sampling sufficient
- No real adjustable parameters in the models → reliable interpolation and extrapolation
- No real adjustable parameters in the models → difficulty to improve on one side without degrading elsewhere

■ Thick target data

- Model and code system validation
- Direct measurement of some quantities of interest in realistic conditions

EU COORDINATED EFFORT ON HIGH-ENERGY DATA

Motivation: ADS for nuclear waste transmutation

> FP5: HINDAS

> FP6: EUROTRANS/NUDATRA

> FP7: ANDES

Large amount of (mostly p-induced) high-quality data collected

- → p-induced neutron DDXS at Saturne, n-induced at Uppsala and UCL
- → Isotopic distribution of residues in reverse kinematics at GSI
- → Neutron multiplicity distributions, LCP DDXS by NESSI
- → LCP, IMF DDXS by the PISA collaboration
- → Residue excitation functions by Michel et al., Titarenko et al.

Improvement of nuclear models

- →INCL4/ABLA tested against the available data (Liège-Saclay-GSI)
- → implementation into high-energy transport codes (MCNPX, PHITS, GEANT4)

VALIDATION OF INCL4 AGAINST EXPERIMENTAL DATA

INCL4.6 Intra-Nuclear Cascade model coupled to ABLA07 de-excitation

PRODUCTION OF At IN THE LBE ISOLDE TARGET

Measurement of At isotopes released from a liquid lead-bismuth (LBE) target irradiated by a proton beam of 1.4 and 1 GeV by the ISOLDE IS419 experiment (Y. Tall et al., ND2007)

◆ not reproduced by any calculation

Two production channels:

Double charge exchange (p,π⁻) induced by primary protons

$$p + {}_{83}Bi \rightarrow {}_{85}At + xn + \pi^-$$

- \rightarrow dominant for light isotopes (A \leq 206)
- > Secondary reactions induced by helium nuclei

$$_{2}$$
He + $_{83}Bi \rightarrow _{85}At + xn$

dominant for heavy isotopes

Calculations with INCL4.6-ABLA07 in MCNPX2.7.b

SECONDARY HELIUM-INDUCED REACTIONS

Helium production in primary reactions.

³He

p(1200 MeV) + Ta (Herbach et al.)

Calculation: INCL4.6 coupled to ABLA07

He-Bi total reaction XS

Excitation functions (4He,xn)

⁴He

PRODUCTION OF At IN ISOLDE LBE TARGET

p (1400 MeV) + Pb-Bi (IS419) -- Astatine

J.C. David et al., EPJA 49, 29 (2013)

Data from Y. Tall et al., ND2007

Calculations: INCL4.6-ABLA07 in MCNPX2.7.b

→ Importance of helium produced by coalescence

Isotopic mass number (A)

IAEA benchmark of spallation models

Neutron double differential cross-sections global

analysis: Division of the spectra in 4 energy regions: evaporation, pre-equilibrium, pure cascade and quasi-elastic

http://www-nds.iaea.org/spallations

Residue global analysis:

Division of the distributions in mass/charge regions: evaporation residues, deep spallation, fission and intermediate mass fragments

Isotopic distributions

<u>Quality</u>	Points
Good	2
Moderately good, minor problems	1
Moderately bad, particular problems	-1
Unacceptably bad, systematically wrong	-2

Conclusions from the IAEA benchmark

- > Situation largely improved compared to previous benchmarks
 - → More experimental data to compare with
 - Global quality of models improved
- Most models well predict neutron and proton DDXS
 - → Predictions of neutron production and spectra rather reliable
- > Not all models reproduce the high energy tail of composite LCP : necessity of a specific process (coalescence or pre-equilibrium)
 - → Importance of having such a mechanism for tritium and ³He prediction
- Heavy evaporation residues well predicted but large discrepancies between models for a lot of nuclides
- Residues very sensitive to the de-excitation stage, necessity to describe all reactions channels correctly (fission, IMF production...)
 - → Large difference from one isotope to another: necessity to check prediction of both isotopic distributions and excitation functions

ARE THERE STILL MISSING DATA?

NEW EU PROJET: CHANDA

Workpackage on high-energy data

- Development of a methodology, specific of highenergy reactions, for uncertainty assessment of safety parameters in ADS, with a particular focus on MYRRHA
- Minimizing the present uncertainties by
 - addressing known gaps in the models,
 - providing more constraining data for models: coincidence between residues and particles
 - integral benchmarking

NEUTRON-INDUCED REACTIONS

■ Neutron-induced reactions

- Most of the data collected during the last 20 years concerned p-induced reaction data
- > Secondary reactions of high energy neutrons play an important role in the production of residues, in particular the highest mass ones
- Comparison of n/p induced reactions interesting for models

800 MeV p on a thick W target

From A. Leprince et al., ICRS12

¹⁴⁸Gd produced in the ESS target

NEUTRON-INDUCED EXCITATION FUNCTIONS

- very few available data
- some attempts to extract n-induced excitation functions from thick target experiments (meteorites)

²⁰¹Bi produced in n+Bi reaction

Measurement at RCNP Osaka at 386 MeV by Tashima et al. (2013)

²⁰⁰Pb produced in n+Bi reaction

Production of ¹⁰Be from O and ²⁶Al from Al

From Leya and Masarik (2009)

n-INDUCED FISSION CROSS SECTION MEASUREMENTS

- > only measurements with respect to ²³⁵U
- > no data above 200 MeV: use of JENDL-HE
- > need for absolute cross-sections measurements

Calculation with INCL4 which gives good results for p-induced fission cross-sections

From S. Lo Meo and D. Mancusi

TRITIUM PRODUCTION

NIM B 268 (2010) 581

- >Cluster emission during the INC stage very important for t
- ➤ INCL4.5-ABLA07 gives a very good agreement with data all over the energy range, generally better than other models in MCNPX

INCL++ EXTENSION TO LIGHT-ION INDUCED REACTIONS

Motivations

- Hadrontheray
- Space radiation protection
- Simulations of nuclear physics experiments

Model development:

New C++ version of the INCL4.6 model (A. Boudard et al., PRC 87, 014606 (2013)) extended to light-ion induced reactions

■ Implementation into GEANT4:

- Release 9.6: INCL++ with LI extension up to ¹⁸O coupled to G4-deexcitation
- New physics lists: QGSP_INCLXX (+ QGSP_INCLXX_HP, FTFP_INCLXX, FTFP_INCLXX_HP to appear with next β-release)

D. Mancusi et al., submitted to PRC

HIGH-ENERGY EXTENSION

Motivations

- **Experiment simulations, radiation protection**
- Muon production
- Multi-pion channels already implemented (Pedoux et al., Adv. in Space Res. 44 (2009))

p+Cu 11.4 GeV

Data from HARP coll. and Chemakin PRC65

From T. Goigoux, Master thesis

DATA NEEDS FOR EXTENSION OF THE MODEL

■ For both light-ion and high-energy extensions

- need of a comprehensive validation on a broad set of data as was done for the nucleon-induced reaction between 100 MeV and 2-3 GeV
- there are available data but not covering all produced particles and nuclei
- a lot of data cannot be used because of not clear acceptance or trigger conditions: simple inclusive DDXS would be useful
- in the case of high-energy extension
 - need for further DDXS for the production of pions and strange particles

cea

ARE THERE STILL MISSING DATA?

- Neutron-induced reactions between 100 and 500 MeV
- > All types but mostly residue production
- **■** Tritium production
- Mainly total production but also DDXS
- Residue production for some isotopes of interest
- excitation functions and production in representative thick targets
- Coincidence experiments to better constrain the models
- Ion-induced reactions
- Inclusive DDXS
- residue production
- Higher energies up to 10-15 GeV
- Inclusive DDXS production of in particular pions and kaons
- Residue production
- In both p and ion- induced reactions